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Abstract—Integrated circuit fabrication technological processes affect error of Multistandard transceiver’s components, thus aims 

to minimize such deviation. This paper analyzes modern multistandard wireless transceiver calibration methods: feedforward, 

feedback, hybrid and indirect. Main parameters to calibrate are: I/Q gain and phase imbalance, DC offset and second intercept point. 

For first time, relations between transceiver parameters, parameters to be calibrated and calibration methods are proposed. 
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I.  INTRODUCTION 

Over last decades advancements of CMOS technology lead to fully integrated systems and increased range of applications. This 
led to exponential growth of devices that use wireless data transmission – mobile phones, smart phones, tablet PCs [1]. Moreover, 
as more and more wireless standards are integrated in devices, need of multiband, multistandard transceiver increases. 

Multistandard direct conversion transceiver consists of direct conversion transmitter and direct conversion receiver. Transmitter 
part consists of I and Q channel digital to analogue converters (DAC), low pass filters (LPF), local oscillator (LO), mixers, power 
amplifier (PA) and band selection filter (BSF). Receiver part consists of BSF, low noise amplifier (LNA), mixers, LO, LPF, 
variable gain amplifiers (VGA) and analogue to digital converters. Signals are processed in digital signal processor. 

Since CMOS process lacks of component parameter accuracy [2], this directly leads to overall operation of the transceiver. 
Thus, transceivers are meant to be calibrated [3], [4], so its parameters are tuned up to desired. As transceiver is specified by a 
series of parameter, Fig. 1 illustrates proposed relation between transceiver parameters, parameters to be calibrated and calibration 
methods [1], [3] ‒ [58], [60] ‒ [63]. 

II. METHODS OF SELF-CALIBRATION 

Each transmitter and receiver architecture has its drawbacks associated with different unwanted processes, such as LO feed 
through, DC offset and so on. In such case, there is need of the calibration systems [3], [5]. This section reviews modern transceiver 
calibration methods and systems that help remove or suppress the mentioned problems. 
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Fig. 1. Relations between transceiver parameters, parameters to be calibrated and calibration methods. 

A. DC offset cancellation 

One of the most severe problems in direct conversion receiver is sensitivity to DC offsets. DC offsets mainly arises from LO 
leakage or interference leakage. The insulation between the LO port and inputs of mixer and LNA is not infinite. This means that 
there exists finite amount of feed through from LO to input of the LNA and RF port of the mixer [6].  If the LO signal leaks to 
LNA, it is mixed with “real” LO signal and it produces a DC component. Similarly, if interference signal leaks from the LNA to 
LO port, it is multiplied by itself and also produce DC component. Similar, as in receiver, transmitter also suffers from LO leakage 
[7]. As illustrated in Fig. 2, mixer DC offset cancellation system consists of variable attenuator and phase shifter [16]. In order to 
eliminate DC offset, a bypass circuit is connected to RF port. Bypass circuit delivers the same signal amplitude as leakage signal, 
but its phase is shifted 180°. 

Moreover, DC offset cancellation techniques are used in VGA calibration [8], [9], [10]. In receiver case, there is residual DC 
offset from mixer output, which also could be increased in LPF output. As gain of VGA is regulated to maximum desired 
amplitude, even small DC offset at input of the VGA could lead to heavy signal distortion at output [11], [12]. 
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Fig. 2. Mixer DC offset cancellation feedback method 
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Fig. 3. Receiver VGA two step DC offset cancellation feedback method.  

 

 



 DC offset estimation and cancellation method for mixer is feedback [6], [13], [14] and for VGA are feedback [8], [9], [16], [18] 
and hybrid [15]. Most widely used VGA DC offset cancellation technique is feedback. Hybrid system is mixed with feedforward 
and feedback parts of system. 

Feedback DC cancellation methods are split to simple and more complex, which includes ADCs, DACs and digital blocks for 
estimation of DC offset. As illustrated in Fig. 3, VGA DC offset cancellation system in receiver consists of comparator, digital 
block, which consists of computation block and registers, and DACs [17]. DC offset cancellation scheme consists of comparator, 
digital block and DACs for LPF and VGA input signal modification (Fig. 3). 

Table 1 summarizes a part of the overviewed modern DC offset cancellation systems and their parameters. The major of 
modern calibration systems are employing feedback technique. 

As seen from Table 1, DC offset cancellation in mixer block reduces DC offset up to 0.129 mV, or 45.3 dB. For VGA block, 
there are feedback and feedforward calibration techniques. Since different authors publish their simulation or measurement results 
using different input DC offset level, it is complicated to compare results. 

A. I/Q imbalance calibration 

An ideal I/Q transceiver, consists of I and Q branches, which analog circuits are same. However, in practice, due to IC 
manufacturing tolerances, it is not possible to perfectly balance I and Q branches. Moreover, analog components are affected by 
temperature variation, aging, etc.  I/Q imbalance is mainly caused by the modulators, since I and Q branches have equal gain and 
90 phase difference. However, other components – DACs or ADCs, filters and mixers also contribute in general to the imbalance 
effects [19]. 

I/Q imbalance calibration methods are off-line and on-line [20]. The I/Q imbalance causes noise between mirror signals, thus 
dynamic range of transceiver degrades. Suppression of image signal is specified as the image rejection ratio (IRR).  

TABLE I.  DIFFERENT DC OFFSET CANCELLATION SYSTEM COMPARISON 

Reference Year Block Technique 
Process, 

μm 

Before 

calibration, 

mV 

After 

calibration, 

mV 

Improvement, 

dB 

[13] 2006 Mixer Feedback 350 24 0.129 45.3 

[6] 2007 Mixer Feedback 350 ‒ 2 ‒ 

[9] 2012 VGA Feedback 180 110 0.9 41.7 

[16] 2010 VGA Feedback 180 327 1.6 46.2 

[8] 2011 VGA Feedback 180 135 4 30.6 

[14] 2007 Mixer Feedback 130 ‒ 0.5 ‒ 

[18] 2010 VGA Feedback 130 454 3 43.6 

[15] 2015 VGA Hybrid 130 11 0.4 28.8 
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Fig. 4. Transmitter I/Q imbalance feedback calibration method. 
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Fig. 5. Receiver I/Q imbalance feedforward calibration method. 

TABLE II.  DIFFERENT I/Q IMBALANCE CALIBRATION SYSTEM COMPARISON 

Reference Year Block 
Process, 

nm 
IRR, dB 

[29] 2015 Receiver 130 60 

[31] 2011 Receiver 90 55 

[28] 2013 Transmitter 65 64 

[24] 2012 Receiver 65 56 

[27] 2012 Receiver 65 55 

[25] 2013 Transceiver 65 42 

[30] 2017 Transceiver 65 47.5 

[26] 2011 Transmitter 40 55 

 

As illustrated in Fig. 4, transmitter calibration scheme consists of LO, mixer at RF PA output, LPF and ADC [21], [22]. DSP 
unit estimates imbalances of gain and phase shift in I and Q branches and pre-equalizes transmitted signal, thus I/Q imbalance is 
minimized. 

Fig. 5 illustrates I/Q imbalance scheme at receiver end. Compensation scheme consists of differential filter and I/Q imbalance 
estimation circuit. Differential filter is used to remove transient response between I and Q branches [23]. Next, I/Q imbalance 
estimation circuit feeds DSP with signal correction data. 

Table 2 summarizes a part of the overviewed modern I/Q imbalance calibration systems. Since different authors highlight 
different aspects of their proposal, comparing them is not very convenient. Main parameter of I/Q imbalance calibration systems is 
IRR. 

As seen from Table 2, receiver with I/Q imbalance calibration system achieves IRR up to 60 dBm. The transmitter with I/Q 
imbalance calibration systems achieves IRR up to 64 dBm. I/Q calibration systems for both transmitter and receiver also are used. 
IRR of such systems reaches up to 47.5 dBm. 

B. IIP2 calibration 

Although the direct conversion receiver architecture is commonly used nowadays due to high integration level, low cost and 
simplicity, it has several issues [5], including second-order intermodulation (IM2) and third-order intermodulation (IM3). The most 
dominant source of IM2 is the down-conversion mixer. Balanced circuits with differential input and output, also symmetric layout 
is used to minimize the even-order distortion effects, but any mismatches in LO, like duty cycle and gain, make the differential 
circuit unbalanced and increases even-order distortion [32], [33] As every cellular system has IIP2 requirements [34] (see Table 3), 
receiver must meet them.  

Adaptive IP2 calibration system is presented in Fig. 6. IP2 calibration system consists of common mode (CM) detector, LPF, 
ADC and least-mean square (LMS) filter [32], [33]. First branch of calibration system provides reference distortion signal. CM 
detector simplifies system as there is not needed use of signal squaring and LPF suppresses any out of band signal components. 
IM2 cancellation is performed entirely in the current domain, changing mixer output DC offset (Fig. 7) [33]. Table 4 summarizes a 
part of the overviewed IIP2 calibration systems. 

As seen from Table 4, only 22% of overviewed receivers meet IIP2 requirements for LTE standard specifications before 
calibration, while after IIP2 calibration – 100%. Also, receivers fabricated using nanometre scale (90 nm and smaller) fabrication 
technology, has higher calibrated linearity, IIP2 of such receivers is >70 dBm. 



TABLE III.  IIP2 REQUIREMENTS OF CELLULAR SYSTEMS 

Cellular system 
Required IIP2, 

dBm 

GSM 46 

UMTS 49 

LTE 62 
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Fig. 6. Receiver adaptive IIP2 feedback calibration method. 

 

LO

RF

Zero 

frequency

Regulated 

current 

supply

 
Fig. 7. Mixer output with regulated current supply. 

 

TABLE IV.  DIFFERENT IIP2 CALIBRATION SYSTEM COMPARISON 

Reference Year 
Process, 

nm 

Supply, 

V 

LO frequency, 

GHz 

IIP2 before 

calibration, 

dBm 

IIP2 after 

calibration, 

dBm 

IIP2 

improvement, 

dBm 

[35] 2008 180 1.8 3.5 47 68 19 

[40] 2013 180 ‒ 2.62 62 83 21 

[33] 2008 130 1.5 ‒ 58 74 16 

[37] 2010 130 1.5 1.8 35 61 26 

[39] 2011 130 1.5 1.8 36 60 24 

[38] 2009 90 1.5 2.0 65 90 25 

[36] 2008 65 1 1.98 55 80 25 

[41] 2014 28 0.9 3.0‒6.0 55 >80 25 

[42] 2016 28 1.2 2.4 53 73 20 

 

C. Low pass filter tuning 

The accuracy of passband cut-off frequency is crucial in wireless applications. Active RC filters suffers from the RC time 
constant deviation with respect to processes, temperature and power supply voltage [43]. There are 3 main auto-tuning methods 
used for filter tuning: direct, indirect and using two identical filters [44]. 



Direct auto-tuning method works in offline mode – filter is disconnected from data transmission branch and connects to 
calibration system. This type of tuning method uses less IC area than other approaches, but since during filter calibration state 
transceiver cannot send or receive data, this approach is rarely used. 

An auto-tuning system with two identical filters works in online mode – one filter is used for data transmission, while other is 
being calibrated. This type of tuning method is more likely to use more of IC area, since active RC filters more often are 4-6th order 
[45], [46], [47]. Such order filter, depending on used filter architecture, employs many components, and since tuning method uses 
two identical filters, overall number of components is twice as large. 

As compromise between an off-line and large IC area using method, indirect tuning method [44], [48], [49] is used (Fig. 8). 
This tuning method works on-line, tunes dummy LPF, which is considered as identical to main LPF. It is possible to achieve same 
IC process mismatch in both filters if they are centred and are near as possible. Tuning scheme consists of frequency divider, 
comparator, resistor (or capacitor) matrix and D-type flip-flop. Most common, in LPF tuning systems, capacitor matrix is used for 
coarse tuning, or bandpass switching, while resistor matrix is used for fine bandpass tuning. Table 5 summarizes a part of the 
overviewed LPF calibration systems. 

As seen from Table 5, LPF tuning range and tuning step does not depend on IC fabrication process node. Most recent work 
show, that tuning range reaches up to 45 %, while tuning step is about 1 % or smaller. It should be mentioned that reducing tuning 
step drastically increases IC area. Most of authors do not publish IC area for LPF tuning system.  
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Fig. 8. Indirect LPF corner frequency tuning method. 

 

 

TABLE V.  DIFFERENT LPF CORNER FREQUENCY TUNING SYSTEM COMPARISON 

Reference Year 
Process, 

nm 
Supply, V 

Corner 

frequency, 

MHz 

Tuning 

range, % 

Tuning 

step, % 

[47] 2009 180 1.8 3.75 40 4 

[51] 2012 180 1.8 
0.25; 0.5; 

1.0; 2.0 
20 3 

[49] 2016 180 1.8 10 30 1 

[54] 2016 180 1.8 0.25 40 3.33 

[50] 2011 130 1.5 0.2; 2.0 20 2.5 

[53] 2016 130 1.3 0.06; 0.18 30 2 

[44] 2017 65 1.2 10‒60 40 0.9 

[52] 2014 55 1 2.5 45 3 

 

D. Automatic gain control 

Automatic gain control is an essential function in modern wireless communication systems. Due to the complicated 
electromagnetic environment and uncertain distance from signal source, the received signal strength suffers from significant 
variation [55]. For maximum effective dynamic range of ADC, AGC is necessary. There are 3 main VGA AGC methods: feedback, 
feedforward and hybrid. 

Most of the AGC systems employ two or three VGA [56]. Commonly, first VGA is used for coarse tuning, while second and 
third is used for fine tuning.  



AGC system with feedforward or feedback loop consists of peak detector and gain control block, which is divided to coarse 
tuning circuitry and fine tuning circuitry (Fig. 9(a, b)) [57], [58]. Hybrid AGC consists of gain determinator and coarse and fine 
control unit (Fig. 9(c)), thus employs analogue and digital tuning [59]. Table 6 summarizes a part of the overviewed AGC systems. 

As seen from Table 6, feedforward AGC method has fastest settling time and is within 0.25 – 0.8 μs range, but gain range does 
not exceed 22 dB, as well gain step varies from 2 to 3 dB/step. The feedback AGC method has far wider gain range, which varies 
from 40 to 89 dB, gain step varies from 1 to 3 dB/step, but settling time varies from 3.2 to 24 μs. Recent studies introduced hybrid 
AGC method, which employs both fast settling time, up to 3 μs, as well as high gain range, up to 96 dB and 1 dB/step gain step.  
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Fig. 9. AGC method, (a) – feedforward, (b) – feedback, (c) – hybrid. 

TABLE VI.  DIFFERENT AGC SYSTEM COMPARISON 

Reference Method Year 
Process, 

nm 
Supply, V 

Gain 

range, dB 

Gain step, 

dB 

Settling 

time, μs 

[57] Feedforward 2010 350 1.8 22 2 0.8 

[61] Feedforward 2008 350 1.8 21 3 0.25 

[58] Feedback 2009 250 1.8 54 1 3.2 

[63] Feedback 2006 180 1.8 40 1 5.6 

[62] Feedback 2010 180 1.8 60 2 <20 

[64] Feedback 2011 180 1.8 89 3 24 

[60] Hybrid 2014 180 1.7 49.3 1 ‒ 

[56] Hybrid 2015 65 1 96 1 3 

III. CONCLUSIONS 

This paper has reviewed the most important parameters to be calibrated in modern transceivers. After analysis of 64 references, 
parameters to be calibrated in transceivers are DC offset, I/Q imbalance, IP2, LPF corner frequency and VGA gain. Moreover, each 
transceiver’s parameter is calibrated using various methods: feedforward, feedback, hybrid, direct and indirect. 

DC offset cancellation methods are feedback and hybrid. Modern DC offset calibration systems reduces DC offset up to 0.129, 
and improvement of DC offset reaches up to 46.2 dB. 

Second most important parameter for calibration in modern transceivers is I/Q imbalance. I/Q imbalance calibration method for 
receiver is feedforward, while for transmitter – feedback. In modern transceiver, with I/Q imbalance calibration, IRR reaches up to 
64 dB. Most of calibration systems employ DSP unit for I/Q imbalance calibration. 



Every cellular standard has its own requirements for IP2. Main block for IP2 calibration is the mixer. In modern transceiver 
IIP2 after calibration reaches up to 90 dBm.  

Low pass filter tuning methods are direct, indirect and using two identical filters. Most common LPF tuning method is indirect. 
While virtually corner frequency of filter can be tuned up to 0%, it requires large area of IC for large resistors. Recent works 
showed that corner frequency is tuned up to 0.8%, while tuning range can be achieved 45%. 

An AGC system is not crucial in modern transceivers, but is recommended, since it leads to more accurate digitization of signal. 
AGC methods are feedforward, feedback and hybrid. Feedforward AGC method has fastest settling time, feedback method – wider 
gain range and smaller gain step and hybrid has average settling time, wide gain range and small gain step. Most recent works 
showed that hybrid AGC method reaches both wide gain range, up to 96 dB, and fast settling time, up to 3 μs. 
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