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Normal Diffusion

The mathematical description of diffusion has many formulations:

I macroscopic model based on conservation of mass and
constitutive Fick’s law;

I probabilistic models based on random walks and central limit
theorems;

I microscopic stochastic models based on Brownian motion and
Langevin equations;

I mesoscopic stochastic models based on master equations and
Fokker-Planck equations.

The mean square displacement of a diffusing particle scales linearly
with time: 〈

(X (t)− 〈X (t)〉)2
〉
∝ t
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Anomalous Diffusion

I Numerous experimental measurements in spatially complex
systems have revealed anomalous diffusion in which
the mean square displacement scales as a fractional
order power law in time:〈

∆X (t)2
〉

=
〈
(X (t)− 〈X (t)〉)2

〉
∝ tβ.

I Anomalous diffusion is ”normal” in spatially disordered
systems, porous media, fractal media, turbulent fluids and
plasmas, biological media with traps, binding sites or
macro-molecular crowding, stock price movements.
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B. I. Henry, T. A. M. Langlands, and P. Straka (2010) An
Introduction to Fractional Diffusion. Complex Physical,
Biophysical and Econophysical Systems: pp. 37-89.
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Local vs Non-Local

Normal diffusion Anomalous diffusion

I In normal diffusion, random walkers (particles) move only into
the neighboring sites.

I Macroscopically, the transport of a field of interest at a certain
location is determined by an appropriate field variable. It is
independent of the global structure of the transported field.
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Vadimas Starikovičius Parallel Algorithms for Fractional Diffusion Problems



Problem Formulation. Motivation.
Equivalent PDE problems and approximations

Comparison of parallel numerical algorithms

Normal Diffusion
Anomalous Diffusion
Definitions of fractional powers of elliptic operators

Local vs Non-Local

Normal diffusion Anomalous diffusion

I In normal diffusion, random walkers (particles) move only into
the neighboring sites.

I Macroscopically, the transport of a field of interest at a certain
location is determined by an appropriate field variable. It is
independent of the global structure of the transported field.
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Local vs Non-Local

Normal diffusion Anomalous diffusion

I In anomalous diffusion, random walkers are able to perform
long jumps - Levy flights.

I Due to observed long range interactions, diffusive flux at a
certain location is affected by the state of the field the entire
domain.
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Fractional diffusion models

Over the past two decades various mathematical models have been
formulated, linked together by tools of fractional calculus:

I fractional constitutive laws;

I probabilistic models based on continuous time random walks
and generalized central limit theorems;

I fractional Langevin equations, fractional Brownian motions;

I fractional Fokker-Planck equations.
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Definitions of fractional powers of elliptic
operators

There are different definitions of fractional Laplacian.

1. Spectral (Fourier) definition.
Let Ω be a bounded domain in Rn, n ≥ 2 with boundary ∂Ω.
Given a function f , we seek u such that

Lβu = f , X ∈ Ω (1)

with some boundary conditions on ∂Ω, 0 < β < 1 and elliptic
operator

Lu = −
n∑

j=1

∂

∂xj

(
k(X )

∂u

∂xj

)
.
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Let us denote by {φk}, k = 1, 2, . . . ,N the orthonormal basis:

Lφk = λkφk .

Then the fractional powers of the diffusion operator are defined by

Lβu =
N∑

k=1

λβkwkφk , (2)

where wk = (u, φk).
Note, that the direct implementation of this approach is very
expensive. It requires the computation of all eigenvectors and
eigenvalues of large matrices.
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Definitions of fractional Laplacian

2. Singular integral (Riesz potential) definition.

Lβu(x) = cn,β p.v.

∫
Rn

u(x)− u(y)

|x − y |n+2β
dy =

= cn,β lim
ε→0

∫
Rn\Bε

u(x)− u(y)

|x − y |n+2β
dy .
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Example. Lβu = 1, x ∈ Ω = (−1, 1), u(−1) = u(1) = 0.

β = 0.995 β = 0.75

Vadimas Starikovičius Parallel Algorithms for Fractional Diffusion Problems



Problem Formulation. Motivation.
Equivalent PDE problems and approximations

Comparison of parallel numerical algorithms

Normal Diffusion
Anomalous Diffusion
Definitions of fractional powers of elliptic operators

Example. Lβu = 1, x ∈ Ω = (−1, 1), u(−1) = u(1) = 0.

β = 0.995 β = 0.75
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Example. Lβu = 1, x ∈ Ω = (−1, 1), u(−1) = u(1) = 0.

β = 0.50 β = 0.25
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Example. Lβu = f (X ), X ∈ Ω = (0, 1)× (0, 1),
u(X ) = 0, X ∈ ∂Ω,

with β = 0.25 and f the checkerboard function:

f (x) =

{
1, if (x1 − 0.5)(x2 − 0.5) > 0;

−1, otherwise.
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Convergence of numerical methods

Bonito A., Pasciak J.E. (2015). Numerical approximation of
fractional powers of elliptic operators. Mathematics of
Computation, 84(295):2083-2110.
Let us assume that linear elements are used to obtain the finite
element method’s approximation Uh ∈ Vh, h being the mesh size
and Vh ⊂ H1

0 (Ω) being the space of continuous piece-wise linear
functions over the mesh. In the case of full regularity, the best
possible convergence rate for f ∈ L2(Ω) is

‖u − Uh‖L2(Ω) ≤ Ch2β| ln h| ‖f ‖L2(Ω). (3)

This estimate illustrates how the accuracy of the numerical
method is reduced, depending on power β ∈ (0, 1).
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Convergence of numerical methods

3D Test. Lβu = f (X ), X ∈ Ω = (0, 1)× (0, 1)× (0, 1),
u(X ) = 0, X ∈ ∂Ω,

where f is the checkerboard function:

f (x) =

{
1, if (x1 − 0.5)(x2 − 0.5)(x3 − 0.5) > 0;

−1, otherwise.

Table : Relative error EF
N of Fourier solution UF

N of 3D test problem

N3: 163 323 643 1283 2563

β = 0.25: 0.035654 0.025169 0.017792 0.012569 0.008855
β = 0.75: 0.012563 0.004399 0.001554 0.000549 0.000193
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Extension to the mixed boundary value problem
Transformation to a pseudo-parabolic PDE problem
Integral representation of the non-local operator
Method based on the best uniform rational approximations

Equivalent PDE problems and approximations

1. Extension to the mixed boundary value problem in the
semi-infinite cylinder;

2. Reduction to a pseudo-parabolic PDE problem;

3. Integral representation of the non-local operator using the
classical local operators;

4. Method based on the best uniform rational approximations.

Vadimas Starikovičius Parallel Algorithms for Fractional Diffusion Problems



Problem Formulation. Motivation.
Equivalent PDE problems and approximations

Comparison of parallel numerical algorithms

Extension to the mixed boundary value problem
Transformation to a pseudo-parabolic PDE problem
Integral representation of the non-local operator
Method based on the best uniform rational approximations

Equivalent PDE problems and approximations

1. Extension to the mixed boundary value problem in the
semi-infinite cylinder;

2. Reduction to a pseudo-parabolic PDE problem;

3. Integral representation of the non-local operator using the
classical local operators;

4. Method based on the best uniform rational approximations.
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Extension to the mixed boundary value
problem in the semi-infinite cylinder

R. Nochetto, E. Otárola, A. Salgado. A PDE approach to
fractional diffusion in general domains: a priori error analysis.
Foundations of Computational Mathematics, 15(3):733–791, 2015.

Nonlocal problem (1) is equivalent to the classical local linear
problem, which is solved in in the semi-infinite cylinder
C = Ω× (0,∞) ⊂ Rn+1:

− ∂

∂y

(
yα
∂V

∂y

)
+ yαLV = 0, (X , y) ∈ C , α = 1− 2β, (4)

− yα
∂V

∂y
= dβf , X ∈ Ω̄× {0},

V = 0, (X , y) ∈ CB = ∂C \ Ω̄× {0}.]

Then u(X ) = V (X , 0).
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Nonlocal problem (1) is equivalent to the classical local linear
problem, which is solved in in the semi-infinite cylinder
C = Ω× (0,∞) ⊂ Rn+1:

− ∂

∂y

(
yα
∂V

∂y

)
+ yαLV = 0, (X , y) ∈ C , α = 1− 2β, (4)

− yα
∂V

∂y
= dβf , X ∈ Ω̄× {0},

V = 0, (X , y) ∈ CB = ∂C \ Ω̄× {0}.]

Then u(X ) = V (X , 0).
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The semi-infinite cylinder is approximated by the truncated
cylinder CY = Ω× {0,Y } with a sufficiently large Y .
A uniform mesh Ωh is introduced in Ω and anisotropic mesh
ωh = {yj = (j/M)γY , j = 0, . . . ,M} is used.

−
(
yαj+1/2

Vh,j+1 − Vh,j

Hj+1/2
− yαj−1/2

Vh,j − Vh,j−1

Hj−1/2

)
+

yα+1
j+1/2 − yα+1

j−1/2

α + 1
LhVh = 0, (Xh, yj) ∈ CYh

, (5)

− yα1/2

Vh,1 − Vh,0

H1/2
+

yα+1
1/2

α + 1
LhVh = dβfh,

Xh ∈ Ω̄h × {0},
Vh = 0, (Xh, yj) ∈ ∂CYh \ Ω̄h × {0}.
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Transformation to pseudo-parabolic problem

P. N. Vabishchevich. Numerically solving an equation for fractional
powers of elliptic operators. Journal of Computational Physics,
282:289-302, 2015.

The solution of nonlocal problem (1) is sought as a mapping

V (X , t) =
(
t(L− δI ) + δI

)−β
f ,

where L ≥ δ0I , δ < δ0. Thus V (X , 1) = L−βf .
The function V satisfies the evolutionary pseudo-parabolic problem

(tG + δI )
∂V

∂t
+ βGV = 0, 0 < t ≤ 1, (6)

V (0) = δ−βf , t = 0,

where G = L− δI .
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Transformation to pseudo-parabolic problem

We use the following finite volume scheme

(tn−1/2Gh + δIh)
V n
h − V n−1

h

τ
+ βGhV

n−1/2
h = 0, 0 < n ≤ M,

V 0
h = δ−βfh,

where

Gh = Lh−δIh, V
n−1/2
h = (V n

h +V n−1
h )/2, tn−1/2 = (tn−1+tn)/2.

Convergence rate of time discretization scheme with the uniform
time-stepping depends on the smoothness of the solution.
Geometrically graded time-stepping scheme is proposed to deal
with the singular behavior of the solution for time t close to 0:
Duan B., Lazarov R., Pasciak J.. Numerical Approximation of
Fractional Powers of Elliptic Operators. 2018.
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Integral representation of the non-local
operator

A. Bonito, J. Pasciak. Numerical approximation of fractional
powers of elliptic operators. Mathematics of Computation,
84:2083–2110, 2015.

The algorithm is based on the integral representation of the
non-local operator using the classical local operators

L−β =
2 sin(πβ)

π

∫ ∞
0

y2β−1(I + y2L)−1dy .
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I Superior results have shown the quadrature formula with
uniformly distributed quadrature points yj = kj :

UM3
h =

2k sin(πβ)

π

m2∑
j=−m1

e2(β−1)yj
(
e−2yj Ih + Lh

)−1
fh,

where m1 =
⌈
π2/(4βk2)

⌉
and m2 =

⌈
π2/(4(1− β)k2)

⌉
.

I The parameter k > 0 controls the accuracy of the
approximation of integral, that is, the method’s transformation
error, and the number of discrete 3D elliptic subproblems that
should to be solved: M = m1 + m2 + 1. It has been proven
that this sinc quadrature converges exponentially.
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Method based on the best uniform rational
approximation of the function t1−β

S. Harizanov, R. Lazarov, P. Marinov, S. Margenov, Y. Vutov.
Optimal Solvers for Linear Systems with Fractional Powers of
Sparse SPD Matrices. arXiv:1612.04846:1–25, 2016.

The approximate solution UM4
h of the discrete problem LβhUh = fh

is defined as

UM4
h = c0A

−1
h f̃h +

m∑
j=1

ci (Ah − dj I )
−1f̃h,

where the matrix Ah and function f̃h on the right–hand side are
scaled as Ah = h2/12Lh and f̃h = (h2/12)βfh.
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Coefficients cj and dj are obtained by solving the global
optimization problem to find the best uniform rational
approximation r∗m(t) of the function t1−β:

rm(t) = c0 +
m∑
j=1

cj t

t − dj
,

min
rm

max
t∈[0,1]

∣∣t1−β − rm(t)
∣∣ = max

t∈[0,1]

∣∣t1−β − r∗m(t)
∣∣ =: εm(β).
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accuracy
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Comparison: Parallel speedups Sp vs accuracy
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Conclusions

I The advantage of transformation to local PDE problems is
that due to the common use of these PDE models their
numerical solution methods are well developed.

I The software packages for their numerical solution (including
parallel) are subject to a long-time development and
permanent improvements.

I Computational and memory challenges are quite different for
each numerical approach.

I The according parallel algorithms have very different
properties. Their performance needs to be carefully studied.
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