ON PARALLEL NUMERICAL ALGORITHMS FOR FRACTIONAL DIFFUSION PROBLEMS

Vadimas Starikovičius

VGTU Department of Mathematical Modelling

December 4, 2018

OUTLINE

PROBLEM FORMULATION. MOTIVATION.

Normal Diffusion

Anomalous Diffusion

Definitions of fractional powers of elliptic operators

OUTLINE

PROBLEM FORMULATION. MOTIVATION.

Normal Diffusion Anomalous Diffusion Definitions of fractional powers of elliptic operators

EQUIVALENT PDE PROBLEMS AND APPROXIMATIONS

Extension to the mixed boundary value problem
Transformation to a pseudo-parabolic PDE problem
Integral representation of the non-local operator
Method based on the best uniform rational approximations

OUTLINE

PROBLEM FORMULATION. MOTIVATION.

Normal Diffusion Anomalous Diffusion Definitions of fractional powers of elliptic operators

EQUIVALENT PDE PROBLEMS AND APPROXIMATIONS

Extension to the mixed boundary value problem
Transformation to a pseudo-parabolic PDE problem
Integral representation of the non-local operator
Method based on the best uniform rational approximations

Comparison of parallel numerical algorithms

The mathematical description of diffusion has many formulations:

 macroscopic model based on conservation of mass and constitutive Fick's law;

The mathematical description of diffusion has many formulations:

- macroscopic model based on conservation of mass and constitutive Fick's law;
- probabilistic models based on random walks and central limit theorems;

The mathematical description of diffusion has many formulations:

- macroscopic model based on conservation of mass and constitutive Fick's law;
- probabilistic models based on random walks and central limit theorems;
- microscopic stochastic models based on Brownian motion and Langevin equations;

The mathematical description of diffusion has many formulations:

- macroscopic model based on conservation of mass and constitutive Fick's law;
- probabilistic models based on random walks and central limit theorems;
- microscopic stochastic models based on Brownian motion and Langevin equations;
- mesoscopic stochastic models based on master equations and Fokker-Planck equations.

The mathematical description of diffusion has many formulations:

- macroscopic model based on conservation of mass and constitutive Fick's law;
- probabilistic models based on random walks and central limit theorems;
- microscopic stochastic models based on Brownian motion and Langevin equations;
- mesoscopic stochastic models based on master equations and Fokker-Planck equations.

The mean square displacement of a diffusing particle scales linearly with time:

$$\langle (X(t) - \langle X(t) \rangle)^2 \rangle \propto t$$

Anomalous Diffusion

Numerous experimental measurements in spatially complex systems have revealed anomalous diffusion in which the mean square displacement scales as a fractional order power law in time:

$$\langle \Delta X(t)^2 \rangle = \langle (X(t) - \langle X(t) \rangle)^2 \rangle \propto t^{\beta}.$$

Anomalous Diffusion

Numerous experimental measurements in spatially complex systems have revealed anomalous diffusion in which the mean square displacement scales as a fractional order power law in time:

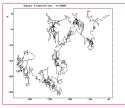
$$\langle \Delta X(t)^2 \rangle = \langle (X(t) - \langle X(t) \rangle)^2 \rangle \propto t^{\beta}.$$

Anomalous diffusion is "normal" in spatially disordered systems, porous media, fractal media, turbulent fluids and plasmas, biological media with traps, binding sites or macro-molecular crowding, stock price movements.

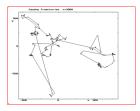
$\langle \Delta X^2 \rangle \sim t (\ln t)^{\kappa}$	ultraslow diffusion	Sinai diffusion
$1 < \kappa < 4$		deterministic diffusion
$\langle \Delta X^2 \rangle \sim t^{\alpha}$	subdiffusion	disordered solids
$0 < \alpha < 1$		biological media
		fractal media
		porous media
$\langle \Delta X^2 \rangle \sim \left\{ \begin{array}{ll} t^{\alpha} & t < \tau \\ t & t > \tau \end{array} \right.$	transient subdiffusion	biological media
$\langle \Delta X^2 \rangle \sim t$	standard diffusion	homogeneous media
$\langle \Delta X^2 \rangle \sim t^{\beta} 1 < \beta < 2$	superdiffusion	turbulent plasmas
		Levy flights
		transport in polymers
$\langle \Delta \ell^2 \rangle \sim t^3$	Richardson diffusion	atmospheric turbulence

B. I. Henry, T. A. M. Langlands, and P. Straka (2010) An Introduction to Fractional Diffusion. Complex Physical, Biophysical and Econophysical Systems: pp. 37-89.

Local VS Non-Local

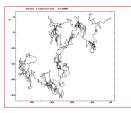


Normal diffusion

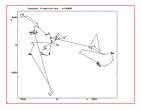


Anomalous diffusion

Local VS NON-LOCAL



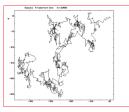
Normal diffusion



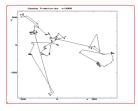
Anomalous diffusion

▶ In normal diffusion, random walkers (particles) move only into the neighboring sites.

Local VS Non-Local



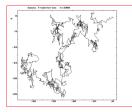
Normal diffusion



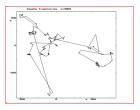
Anomalous diffusion

- ▶ In normal diffusion, random walkers (particles) move only into the neighboring sites.
- Macroscopically, the transport of a field of interest at a certain location is determined by an appropriate field variable. It is independent of the global structure of the transported field.

Local VS Non-Local

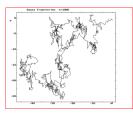


Normal diffusion

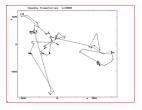


Anomalous diffusion

Local vs Non-Local



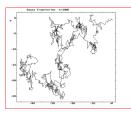
Normal diffusion



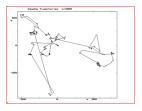
Anomalous diffusion

► In anomalous diffusion, random walkers are able to perform long jumps - Levy flights.

Local vs Non-Local



Normal diffusion



Anomalous diffusion

- In anomalous diffusion, random walkers are able to perform long jumps - Levy flights.
- Due to observed long range interactions, diffusive flux at a certain location is affected by the state of the field the entire domain.

Fractional diffusion models

Fractional diffusion models

Over the past two decades various mathematical models have been formulated, linked together by tools of fractional calculus:

fractional constitutive laws;

FRACTIONAL DIFFUSION MODELS

- fractional constitutive laws;
- probabilistic models based on continuous time random walks and generalized central limit theorems;

FRACTIONAL DIFFUSION MODELS

- fractional constitutive laws;
- probabilistic models based on continuous time random walks and generalized central limit theorems;
- fractional Langevin equations, fractional Brownian motions;

FRACTIONAL DIFFUSION MODELS

- fractional constitutive laws;
- probabilistic models based on continuous time random walks and generalized central limit theorems;
- fractional Langevin equations, fractional Brownian motions;
- fractional Fokker-Planck equations.

DEFINITIONS OF FRACTIONAL POWERS OF ELLIPTIC OPERATORS

There are different definitions of fractional Laplacian.

DEFINITIONS OF FRACTIONAL POWERS OF ELLIPTIC OPERATORS

There are different definitions of fractional Laplacian.

1. Spectral (Fourier) definition.

Let Ω be a bounded domain in \mathbb{R}^n , $n \geq 2$ with boundary $\partial \Omega$. Given a function f, we seek u such that

$$L^{\beta}u = f, \quad X \in \Omega \tag{1}$$

DEFINITIONS OF FRACTIONAL POWERS OF ELLIPTIC OPERATORS

There are different definitions of fractional Laplacian.

1. Spectral (Fourier) definition.

Let Ω be a bounded domain in \mathbb{R}^n , $n \geq 2$ with boundary $\partial \Omega$. Given a function f, we seek u such that

$$L^{\beta}u = f, \quad X \in \Omega \tag{1}$$

with some boundary conditions on $\partial\Omega,\,0<\beta<1$ and elliptic operator

$$Lu = -\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(k(X) \frac{\partial u}{\partial x_{i}} \right).$$

Let us denote by $\{\phi_k\}$, $k=1,2,\ldots,N$ the orthonormal basis:

$$L\phi_k = \lambda_k \phi_k.$$

Let us denote by $\{\phi_k\}$, $k=1,2,\ldots,N$ the orthonormal basis:

$$L\phi_k = \lambda_k \phi_k$$
.

Then the fractional powers of the diffusion operator are defined by

$$L^{\beta}u = \sum_{k=1}^{N} \lambda_k^{\beta} w_k \phi_k, \tag{2}$$

where $w_k = (u, \phi_k)$.

Let us denote by $\{\phi_k\}$, $k=1,2,\ldots,N$ the orthonormal basis:

$$L\phi_k = \lambda_k \phi_k$$
.

Then the fractional powers of the diffusion operator are defined by

$$L^{\beta}u = \sum_{k=1}^{N} \lambda_k^{\beta} w_k \phi_k, \tag{2}$$

where $w_k = (u, \phi_k)$.

Note, that the direct implementation of this approach is very expensive. It requires the computation of all eigenvectors and eigenvalues of large matrices.

DEFINITIONS OF FRACTIONAL LAPLACIAN

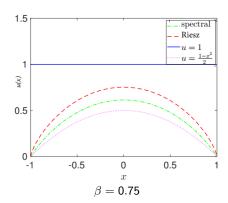
2. Singular integral (Riesz potential) definition.

$$L^{\beta}u(x) = c_{n,\beta} \text{ p.v.} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2\beta}} dy =$$

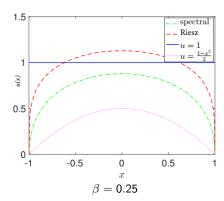
$$= c_{n,\beta} \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n \setminus B_{\varepsilon}} \frac{u(x) - u(y)}{|x - y|^{n+2\beta}} dy.$$

Example.
$$L^{\beta}u = 1$$
, $x \in \Omega = (-1, 1)$, $u(-1) = u(1) = 0$.

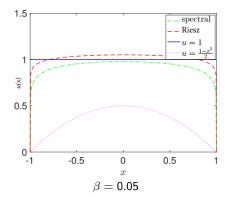
Example.
$$L^{\beta}u = 1$$
, $x \in \Omega = (-1, 1)$, $u(-1) = u(1) = 0$.

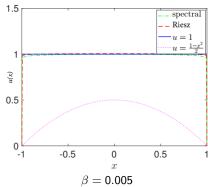


Example.
$$L^{\beta}u = 1$$
, $x \in \Omega = (-1, 1)$, $u(-1) = u(1) = 0$.



Example.
$$L^{\beta}u = 1$$
, $x \in \Omega = (-1, 1)$, $u(-1) = u(1) = 0$.





Example.
$$L^{\beta}u = f(X), X \in \Omega = (0,1) \times (0,1),$$

 $u(X) = 0, X \in \partial\Omega,$

with $\beta = 0.25$ and f the checkerboard function:

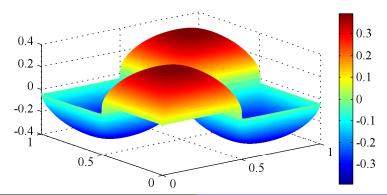
$$f(x) = \begin{cases} 1, & \text{if } (x_1 - 0.5)(x_2 - 0.5) > 0; \\ -1, & \text{otherwise.} \end{cases}$$

Example.
$$L^{\beta}u = f(X), X \in \Omega = (0,1) \times (0,1),$$

 $u(X) = 0, X \in \partial\Omega,$

with $\beta = 0.25$ and f the checkerboard function:

$$f(x) = \begin{cases} 1, & \text{if } (x_1 - 0.5)(x_2 - 0.5) > 0; \\ -1, & \text{otherwise.} \end{cases}$$



Bonito A., Pasciak J.E. (2015). Numerical approximation of fractional powers of elliptic operators. *Mathematics of Computation*, **84**(295):2083-2110.

Let us assume that linear elements are used to obtain the finite element method's approximation $U_h \in V_h$, h being the mesh size and $V_h \subset H^1_0(\Omega)$ being the space of continuous piece-wise linear functions over the mesh. In the case of full regularity, the best possible convergence rate for $f \in L^2(\Omega)$ is

Bonito A., Pasciak J.E. (2015). Numerical approximation of fractional powers of elliptic operators. *Mathematics of Computation*, **84**(295):2083-2110.

Let us assume that linear elements are used to obtain the finite element method's approximation $U_h \in V_h$, h being the mesh size and $V_h \subset H^1_0(\Omega)$ being the space of continuous piece-wise linear functions over the mesh. In the case of full regularity, the best possible convergence rate for $f \in L^2(\Omega)$ is

$$||u - U_h||_{L^2(\Omega)} \le Ch^{2\beta} |\ln h| ||f||_{L^2(\Omega)}.$$
 (3)

Bonito A., Pasciak J.E. (2015). Numerical approximation of fractional powers of elliptic operators. *Mathematics of Computation*, **84**(295):2083-2110.

Let us assume that linear elements are used to obtain the finite element method's approximation $U_h \in V_h$, h being the mesh size and $V_h \subset H^1_0(\Omega)$ being the space of continuous piece-wise linear functions over the mesh. In the case of full regularity, the best possible convergence rate for $f \in L^2(\Omega)$ is

$$||u - U_h||_{L^2(\Omega)} \le Ch^{2\beta} |\ln h| ||f||_{L^2(\Omega)}.$$
 (3)

This estimate illustrates how the accuracy of the numerical method is reduced, depending on power $\beta \in (0,1)$.

3D Test.
$$L^{\beta}u=f(X), \ X\in\Omega=(0,1)\times(0,1)\times(0,1),$$
 $u(X)=0, \ X\in\partial\Omega,$

where f is the checkerboard function:

$$f(x) = \begin{cases} 1, & \text{if } (x_1 - 0.5)(x_2 - 0.5)(x_3 - 0.5) > 0; \\ -1, & \text{otherwise.} \end{cases}$$

3D Test.
$$L^{\beta}u = f(X), \ X \in \Omega = (0,1) \times (0,1) \times (0,1), \ u(X) = 0, \ X \in \partial\Omega,$$

where f is the checkerboard function:

$$f(x) = \begin{cases} 1, & \text{if } (x_1 - 0.5)(x_2 - 0.5)(x_3 - 0.5) > 0; \\ -1, & \text{otherwise.} \end{cases}$$

Table : Relative error E_N^F of Fourier solution U_N^F of 3D test problem

N ³ :	16 ³	32 ³	64 ³	128 ³	256 ³
$\beta = 0.25$:	0.035654	0.025169	0.017792	0.012569	0.008855
$\beta = 0.75$:	0.012563	0.004399	0.001554	0.000549	0.000193

EQUIVALENT PDE PROBLEMS AND APPROXIMATIONS

1. Extension to the mixed boundary value problem in the semi-infinite cylinder;

EQUIVALENT PDE PROBLEMS AND APPROXIMATIONS

- 1. Extension to the mixed boundary value problem in the semi-infinite cylinder;
- 2. Reduction to a pseudo-parabolic PDE problem;

EQUIVALENT PDE PROBLEMS AND APPROXIMATIONS

- 1. Extension to the mixed boundary value problem in the semi-infinite cylinder;
- 2. Reduction to a pseudo-parabolic PDE problem;
- 3. Integral representation of the non-local operator using the classical local operators;

Equivalent PDE problems and approximations

- 1. Extension to the mixed boundary value problem in the semi-infinite cylinder;
- 2. Reduction to a pseudo-parabolic PDE problem;
- 3. Integral representation of the non-local operator using the classical local operators;
- 4. Method based on the best uniform rational approximations.

EXTENSION TO THE MIXED BOUNDARY VALUE PROBLEM IN THE SEMI-INFINITE CYLINDER

R. Nochetto, E. Otárola, A. Salgado. A PDE approach to fractional diffusion in general domains: a priori error analysis. *Foundations of Computational Mathematics*, **15**(3):733–791, 2015.

EXTENSION TO THE MIXED BOUNDARY VALUE PROBLEM IN THE SEMI-INFINITE CYLINDER

R. Nochetto, E. Otárola, A. Salgado. A PDE approach to fractional diffusion in general domains: a priori error analysis. Foundations of Computational Mathematics, **15**(3):733–791, 2015. Nonlocal problem (1) is equivalent to the classical local linear problem, which is solved in in the semi-infinite cylinder $C = \Omega \times (0, \infty) \subset \mathbb{R}^{n+1}$:

EXTENSION TO THE MIXED BOUNDARY VALUE PROBLEM IN THE SEMI-INFINITE CYLINDER.

R. Nochetto, E. Otárola, A. Salgado. A PDE approach to fractional diffusion in general domains: a priori error analysis. Foundations of Computational Mathematics, **15**(3):733–791, 2015. Nonlocal problem (1) is equivalent to the classical local linear problem, which is solved in in the semi-infinite cylinder $C = \Omega \times (0,\infty) \subset \mathbb{R}^{n+1}$:

$$-\frac{\partial}{\partial y}\left(y^{\alpha}\frac{\partial V}{\partial y}\right) + y^{\alpha}LV = 0, \quad (X,y) \in C, \ \alpha = 1 - 2\beta, \quad (4)$$
$$-y^{\alpha}\frac{\partial V}{\partial y} = d_{\beta}f, \quad X \in \bar{\Omega} \times \{0\},$$
$$V = 0, \quad (X,y) \in C_{B} = \partial C \setminus \bar{\Omega} \times \{0\}.$$

EXTENSION TO THE MIXED BOUNDARY VALUE PROBLEM IN THE SEMI-INFINITE CYLINDER

R. Nochetto, E. Otárola, A. Salgado. A PDE approach to fractional diffusion in general domains: a priori error analysis. Foundations of Computational Mathematics, **15**(3):733–791, 2015. Nonlocal problem (1) is equivalent to the classical local linear problem, which is solved in in the semi-infinite cylinder $C = \Omega \times (0, \infty) \subset \mathbb{R}^{n+1}$:

$$-\frac{\partial}{\partial y}\left(y^{\alpha}\frac{\partial V}{\partial y}\right) + y^{\alpha}LV = 0, \quad (X,y) \in C, \ \alpha = 1 - 2\beta, \quad (4)$$
$$-y^{\alpha}\frac{\partial V}{\partial y} = d_{\beta}f, \quad X \in \bar{\Omega} \times \{0\},$$
$$V = 0, \quad (X,y) \in C_{B} = \partial C \setminus \bar{\Omega} \times \{0\}.$$

Then
$$u(X) = V(X, 0)$$
.

The semi-infinite cylinder is approximated by the truncated cylinder $C_Y = \Omega \times \{0, Y\}$ with a sufficiently large Y.

A uniform mesh Ω_h is introduced in Ω and anisotropic mesh $\omega_h = \{y_i = (j/M)^{\gamma} Y, j = 0, \dots, M\}$ is used.

$$-\left(y_{j+1/2}^{\alpha} \frac{V_{h,j+1} - V_{h,j}}{H_{j+1/2}} - y_{j-1/2}^{\alpha} \frac{V_{h,j} - V_{h,j-1}}{H_{j-1/2}}\right) + \frac{y_{j+1/2}^{\alpha+1} - y_{j-1/2}^{\alpha+1}}{\alpha+1} L_h V_h = 0, \quad (X_h, y_j) \in C_{Y_h}, \quad (5)$$

$$-y_{1/2}^{\alpha} \frac{V_{h,1} - V_{h,0}}{H_{1/2}} + \frac{y_{1/2}^{\alpha+1}}{\alpha+1} L_h V_h = d_{\beta} f_h,$$

$$X_h \in \bar{\Omega}_h \times \{0\},$$

$$V_h = 0, \quad (X_h, y_j) \in \partial C_{Y_h} \setminus \bar{\Omega}_h \times \{0\}.$$

Transformation to pseudo-parabolic problem

P. N. Vabishchevich. Numerically solving an equation for fractional powers of elliptic operators. *Journal of Computational Physics*, **282**:289-302, 2015.

P. N. Vabishchevich. Numerically solving an equation for fractional powers of elliptic operators. *Journal of Computational Physics*, **282**:289-302, 2015.

The solution of nonlocal problem (1) is sought as a mapping

$$V(X,t) = (t(L-\delta I) + \delta I)^{-\beta} f,$$

where $L \ge \delta_0 I$, $\delta < \delta_0$. Thus $V(X, 1) = L^{-\beta} f$.

P. N. Vabishchevich. Numerically solving an equation for fractional powers of elliptic operators. *Journal of Computational Physics*, **282**:289-302, 2015.

The solution of nonlocal problem (1) is sought as a mapping

$$V(X,t) = (t(L-\delta I) + \delta I)^{-\beta} f,$$

where $L \ge \delta_0 I$, $\delta < \delta_0$. Thus $V(X, 1) = L^{-\beta} f$.

The function V satisfies the evolutionary pseudo-parabolic problem

$$(tG + \delta I)\frac{\partial V}{\partial t} + \beta GV = 0, \quad 0 < t \le 1,$$

$$V(0) = \delta^{-\beta} f, \quad t = 0,$$
(6)

where $G = L - \delta I$.

We use the following finite volume scheme

$$(t^{n-1/2}G_h + \delta I_h)\frac{V_h^n - V_h^{n-1}}{\tau} + \beta G_h V_h^{n-1/2} = 0, \quad 0 < n \le M,$$

 $V_h^0 = \delta^{-\beta} f_h,$

where

$$G_h = L_h - \delta I_h$$
, $V_h^{n-1/2} = (V_h^n + V_h^{n-1})/2$, $t^{n-1/2} = (t^{n-1} + t^n)/2$.

We use the following finite volume scheme

$$(t^{n-1/2}G_h + \delta I_h)\frac{V_h^n - V_h^{n-1}}{\tau} + \beta G_h V_h^{n-1/2} = 0, \quad 0 < n \le M,$$

$$V_h^0 = \delta^{-\beta} f_h,$$

where

$$G_h = L_h - \delta I_h$$
, $V_h^{n-1/2} = (V_h^n + V_h^{n-1})/2$, $t^{n-1/2} = (t^{n-1} + t^n)/2$.

Convergence rate of time discretization scheme with the **uniform** time-stepping depends on the smoothness of the solution.

We use the following finite volume scheme

$$(t^{n-1/2}G_h + \delta I_h)\frac{V_h^n - V_h^{n-1}}{\tau} + \beta G_h V_h^{n-1/2} = 0, \quad 0 < n \le M,$$

$$V_h^0 = \delta^{-\beta} f_h,$$

where

$$G_h = L_h - \delta I_h$$
, $V_h^{n-1/2} = (V_h^n + V_h^{n-1})/2$, $t^{n-1/2} = (t^{n-1} + t^n)/2$.

Convergence rate of time discretization scheme with the **uniform** time-stepping depends on the smoothness of the solution.

Geometrically graded time-stepping scheme is proposed to deal with the singular behavior of the solution for time t close to 0: Duan B., Lazarov R., Pasciak J.. Numerical Approximation of Fractional Powers of Elliptic Operators. 2018.

Integral representation of the non-local operator

A. Bonito, J. Pasciak. Numerical approximation of fractional powers of elliptic operators. *Mathematics of Computation*, **84**:2083–2110, 2015.

INTEGRAL REPRESENTATION OF THE NON-LOCAL OPERATOR

A. Bonito, J. Pasciak. Numerical approximation of fractional powers of elliptic operators. *Mathematics of Computation*, **84**:2083–2110, 2015.

The algorithm is based on the integral representation of the non-local operator using the classical local operators

$$L^{-\beta} = \frac{2\sin(\pi\beta)}{\pi} \int_0^\infty y^{2\beta-1} (I + y^2 L)^{-1} dy.$$

Superior results have shown the quadrature formula with uniformly distributed quadrature points $y_i = kj$:

$$U_h^{M3} = \frac{2k\sin(\pi\beta)}{\pi} \sum_{j=-m_1}^{m_2} e^{2(\beta-1)y_j} \left(e^{-2y_j} I_h + L_h \right)^{-1} \mathbf{f}_h,$$

where
$$m_1 = \lceil \pi^2/(4\beta k^2) \rceil$$
 and $m_2 = \lceil \pi^2/(4(1-\beta)k^2) \rceil$.

Superior results have shown the quadrature formula with uniformly distributed quadrature points $y_i = kj$:

$$U_h^{M3} = \frac{2k\sin(\pi\beta)}{\pi} \sum_{j=-m_1}^{m_2} e^{2(\beta-1)y_j} \left(e^{-2y_j} I_h + L_h \right)^{-1} \mathbf{f}_h,$$

where
$$m_1 = \lceil \pi^2/(4\beta k^2) \rceil$$
 and $m_2 = \lceil \pi^2/(4(1-\beta)k^2) \rceil$.

▶ The parameter k > 0 controls the accuracy of the approximation of integral, that is, the method's transformation error, and the number of discrete 3D elliptic subproblems that should to be solved: $M = m_1 + m_2 + 1$. It has been proven that this sinc quadrature converges exponentially.

METHOD BASED ON THE BEST UNIFORM RATIONAL APPROXIMATION OF THE FUNCTION $t^{1-\beta}$

S. Harizanov, R. Lazarov, P. Marinov, S. Margenov, Y. Vutov. Optimal Solvers for Linear Systems with Fractional Powers of Sparse SPD Matrices. *arXiv*:1612.04846:1–25, 2016.

METHOD BASED ON THE BEST UNIFORM RATIONAL APPROXIMATION OF THE FUNCTION $t^{1-\beta}$

S. Harizanov, R. Lazarov, P. Marinov, S. Margenov, Y. Vutov. Optimal Solvers for Linear Systems with Fractional Powers of Sparse SPD Matrices. arXiv:1612.04846:1-25, 2016. The approximate solution U_h^{M4} of the discrete problem $L_h^\beta U_h = f_h$ is defined as

$$U_h^{M4} = c_0 A_h^{-1} \tilde{f}_h + \sum_{j=1}^m c_j (A_h - d_j I)^{-1} \tilde{f}_h,$$

where the matrix A_h and function \tilde{f}_h on the right-hand side are scaled as $A_h = h^2/12L_h$ and $\tilde{\mathbf{f}}_h = (h^2/12)^{\beta}f_h$.

METHOD BASED ON THE BEST UNIFORM RATIONAL APPROXIMATION OF THE FUNCTION $t^{1-\beta}$

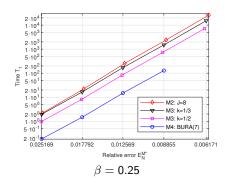
Coefficients c_j and d_j are obtained by solving the global optimization problem to find the best uniform rational approximation $r_m^*(t)$ of the function $t^{1-\beta}$:

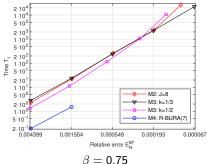
METHOD BASED ON THE BEST UNIFORM RATIONAL APPROXIMATION OF THE FUNCTION $t^{1-\beta}$

Coefficients c_j and d_j are obtained by solving the global optimization problem to find the best uniform rational approximation $r_m^*(t)$ of the function $t^{1-\beta}$:

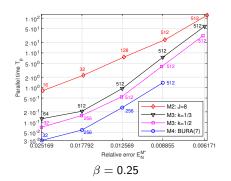
$$r_m(t) = c_0 + \sum_{j=1}^m \frac{c_j t}{t - d_j},$$
 $\min_{r_m} \max_{t \in [0,1]} \left| t^{1-\beta} - r_m(t) \right| = \max_{t \in [0,1]} \left| t^{1-\beta} - r_m^*(t) \right| =: \varepsilon_m(\beta).$

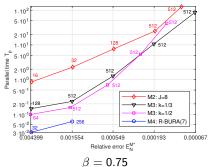
Comparison: Serial solution times T_1 vs accuracy



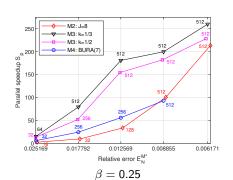


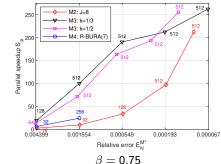
Comparison: Parallel solution times T_p vs accuracy





Comparison: Parallel speedups S_p vs accuracy





► The advantage of transformation to local PDE problems is that due to the common use of these PDE models their numerical solution methods are well developed.

- The advantage of transformation to local PDE problems is that due to the common use of these PDE models their numerical solution methods are well developed.
- ► The software packages for their numerical solution (including parallel) are subject to a long-time development and permanent improvements.

- The advantage of transformation to local PDE problems is that due to the common use of these PDE models their numerical solution methods are well developed.
- ► The software packages for their numerical solution (including parallel) are subject to a long-time development and permanent improvements.
- Computational and memory challenges are quite different for each numerical approach.

- ► The advantage of transformation to local PDE problems is that due to the common use of these PDE models their numerical solution methods are well developed.
- ► The software packages for their numerical solution (including parallel) are subject to a long-time development and permanent improvements.
- Computational and memory challenges are quite different for each numerical approach.
- The according parallel algorithms have very different properties. Their performance needs to be carefully studied.