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Abstract. Some events (as, for instance, a bridge collapse, an underpass closure or a road maintenance intervention) 
may generate the total or partial unavailability of some elements of urban road networks. Hence, some users have to 
redirect their paths generating an increase in congestion on the remaining part of the network. In this context, this 
paper proposes the design of additional public transport services to increase the resilience of road urban networks by 
affecting the user modal choices to reduce road flows and bring congestion levels as close as possible to the initial equi-
librium conditions. Finally, to verify the usefulness and feasibility of the proposed methodology, it has been applied in 
the case of the road network of Fuorigrotta, a district of the city of Naples, in southern Italy.
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Introduction

According to the Cambridge Business English Diction-
ary (2023), the term resilience means “the quality of 
being able to return quickly to a previous good condi-
tion after problems”. In this context, the resilience of a 
transport system (as, for instance, a road network) can 
be considered as the ability to react to external events 
(such as disruptions, breakdowns, etc.) returning to the 
unperturbed initial conditions.

Balakrishnan and Cassottana (2022) propose a 
simulation platform which analyses jointly power, wa-
ter and transport networks to verify disaster effects in 
terms of infrastructure failures and determine subse-
quent post-disaster restoration. Likewise, Besinovic 
et  al. (2022) propose a passenger-centred resilience 
assessment for analysing disruption scenarios in rail-
way contexts. In particular, they identify two classes 
of disruptions: short-duration disruptions (about 1–2 
hours) and long-duration disruptions (multiple days or 
weeks). Moreover, Guo et al. (2021) identify the opti-
mal location of emergency rescue facilities to improve 
resilience on multimodal transport networks; while Liu 
et al. (2022) propose to act modifying access flows to 
railway stations to increase the resilience of multimode 

public transit networks. Finally, Potter et al. (2022) ap-
ply the resilience concept to the rail freight context.

Since a transport system represents an object that is de-
signed (or in some cases redesigned), in terms of resilience, 
it is possible to identify 3 feasible conditions: (1) the design 
of a transport system with pre-established resilience values; 
(2) the analysis of an (existing) transport system to deter-
mine its resilience values; (3) the modification/redesign of
a transport system to vary its resilience values.

Whatever the condition to be analysed, it is necessary 
to have 2 classes of models: (a) design models, to define the 
values of decision variables (design parameters) to achieve 
a prefixed objective; (b) simulation models, to define the 
values of descriptive variables (flow parameters) to describe 
the performance of a transportation system in the case of a 
prefixed configuration.

Both classes of models have been extensively analysed 
in the literature. Indeed, design models have been exam-
ined in the case of private road systems (Magnanti & Wong, 
1984; Meng & Yang, 2002; Mahmoudi et al., 2019; Shan-
mugasumdaram et  al., 2019), public transport systems 
(LeBlanc, 1988; Cipriani et al., 2012; Yao et al., 2014; Bin 
et al., 2015; Szeto et al., 2015; Owais & Osman, 2018) and 
multimodal transport systems (D’Acierno et al., 2011; Gallo 
et al., 2011; Miandoabchi et al., 2012; Huang et al., 2018; 
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Pinto et al., 2020). Likewise, simulation models have been 
examined in the case of private road systems (Daganzo 
& Sheffi, 1977; Sheffi & Powell, 1981; Yildirimoglu et al., 
2018; Salman & Alaswad, 2018), public transport systems 
(Fernandez et al., 1994; Wu et al., 1994; Nguyen et al., 1998; 
Nuzzolo et al., 2012; Narayan et al., 2020) and multimodal 
transport systems (Cantarella, 1997; D’Acierno et al., 2002; 
Zhang et al., 2020; Jiang & Nielsen, 2022).

In this context, the paper aims to increase the resil-
ience of the road transport network by providing addi-
tional public transport services. Indeed, in the analysis 
of urban context, it is necessary to adopt multimodal ap-
proaches since: (a) users generally have at least 2 avail-
able transport systems: the private road and the public 
transport systems. A variation in the performance of one 
of them can produce a variation in user modal choices 
and, therefore, a different use degree for each of them; 
(b) congestion of the private road system affects the per-
formance (i.e., travel times) of buses in shared lanes and 
service frequencies of buses in share lanes affect conges-
tion of the private road system.

The close dependence between the 2 transport sys-
tems in urban areas can be exploited to mitigate the effect 
of feasible disruptions and/or breakdowns on a system by 
improving the other transport system.

The paper is organised as follows: Section 2 provides a 
methodology based on a multimodal approach for analys-
ing the resilience of transportation systems and suggesting 
optimal mitigative interventions; Section 3 applies the pro-
posed methodology in a real case study; finally, conclusions 
and research prospects are synthesised in Section 4.

1. The resilience analysis of a multimodal 
transportation network

As described in the introduction, the analysis of an ur-
ban transport system requires a multimodal approach to 
take into account the users’ choices (the users’ modal 
choices are a function of the performances of all trans-
port systems in the area) and the reciprocal influences 
of the networks (the number of vehicles travelling on a 
network may affect the performance of other networks).

Therefore, a Resilience Analysis Model (RAM) may be 
formulated as a multidimensional constrained optimi-
sation problem based on a multimodal network design 
problem framework (Montella et al., 2000), that is:

( )ˆ arg min  , ,Z
∈

=
y

* *
c b

y S
y y f f   (1)

subject to:

,  = 
* *
c bf f Λ ( ), , ;* *

c by f f   (2)

  (3)

where y is the decisional variable vector to be optimised; 
ŷ  is the optimal value of y; Sy is the feasibility set of 

variable y; Z is the objective function to be minimised; 
*
cf  is the equilibrium flow vector associated with the 

private road system; b
*f  is the equilibrium flow vector 

associated with the public transport system; Λ is the as-
signment function; B is the budget function and B* is the 
budget threshold.

Equation (1) expresses the optimisation problem which 
consists in determining the optimal value of variable y, in-
dicated as ŷ , which belongs to the feasibility set Sy and 
minimises objective function Z, depending on decisional 
variable y and equilibrium flows ( *

cf  and b
*f ).

Constraint (2) is the multimodal assignment constraint 
which provides equilibrium flows of each transportation 
system consistent with themselves. Details on the formu-
lation of the multimodal assignment problem and related 
solution algorithms can be found in Cantarella (1997) and 
D’Acierno et al. (2002). To further clarify this aspect, it has 
been detailed in Section 2.1.

Constraint (3) is the budget constraint which pro-
vides the budget value associated with each value of 
decisional variable y and corresponding equilibrium 
flows ( *

cf  and *
bf ) which has to be not higher than 

budget threshold B*.
Hence, the resilience analysis consists in determin-

ing: (a) the disruption scenarios in terms of event/
events, the duration of the event/events, and the im-
plications in terms of transport networks; (b) the vari-
ables to be designed/improved to compensate for the 
negative effects induced by the hypothesised disruption 
scenarios; (c) the evaluation of network performance 
variations among the different scenarios: initial condi-
tion, disruption scenarios without interventions and 
disruption scenarios with interventions.

1.1. The bimodal assignment model

In transportation networks, users make travel choices 
(such as mode choices and/or path choices) as a func-
tion of network performance but network performance 
depends on the number of users that share the same ele-
ment of the network. Hence, it is necessary to identify a 
user flow configuration which provides network perfor-
mance which affects user choices so as to generate user 
flows equal to the initial flow configuration. With the 
assumption of stochastic choice models, the definition of 
coherent user flows may be formulated as a fixed-point 
problem.

Analytically, the path choice model, which allows to 
calculate user path choices depending on network per-
formance, may be formulated as:

( )= ⋅path
m m m mF P C d    { },m c b∀ ∈ ,  (4)

where mF  is the path flow vector associated with the 
generic mode m; ( )⋅path

mP  is the path choice matrix as-
sociated with generic mode m; Cm is the path cost vec-
tor associated with generic mode m; md  is the travel 
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demand vector associated with generic mode m; the 
generic mode m may be equal to c in the case of the 
private car system and equal to b in the case of the public 
transport system.

Likewise, the mode choice model, which allows to cal-
culate user mode choices depending on network perfor-
mance, may be formulated as:

( ),= ⋅mode
m m c bd P C C d    { },m c b∀ ∈ ,  (5)

where ( )⋅mode
mP  is the modal choice vector associated with 

generic model m; d is the all-modes travel demand model.
The flow propagation model, which allows to calcu-

late user link flows depending on user path flows, may 
be formulated as:

   { },m c b∀ ∈ ,  (6)

where pax
mf  is the user link flow vector associated with ge-

neric mode m; Am is the link-path incidence matrix associ-
ated with generic mode m, where the generic element ,

m
i ja  

is equal to 1 if i-th link belongs to j-th path, 0 otherwise.
The congestion model, which allows to calculate net-

work performance depending on vehicular link flows, may 
be formulated as follows:

   { },m c b∀ ∈ ,  (7)

where veh
cf  is the vehicular link flow associated with the 

private road system; veh
bf  is the vehicular link flow associ-

ated with the public transport system.
It is worth noting that in the private road system, 

there is a direct proportionality between user and ve-
hicular flows through the average occupancy coeffi-
cient, while in the public transport systems, the vehic-
ular flows are fixed, independent from user flows and 
equal to the service frequencies φb . Hence, Eq. (7) may 
be reformulated as:

   { },m c b∀ ∈ .  (8)

By combining Eqs (4)–(6) and (8), we obtain the fol-
lowing relation:
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which extensively expresses the multimodal assignment 
constraint (2). Indeed, by replacing passenger flows (i.e. 

pax
cf  and pax

bf ) with equilibrium flows (i.e. *
cf  and 

*
bf ) in Eq. (9), we obtain Eq. (2).

2. Application to a real case study

To show the utility and the feasibility of the resilience 
analysis for transport networks in urban areas through 
a multimodal approach, it has been applied in the case 
study of the Fuorigrotta district of the city of Naples, in 
southern Italy.

This district is characterised by mobility consisting 
of about 18,000 vehicles travelling in the morning rush 
hour and about 4,400 people travelling on public trans-
port. Public transport consists of 3 rail/metro lines and 
6 bus lines. Details of the road and public transport net-
work can be found in Figure 1.

The disruption scenario considered to evaluate the 
resilience improvement strategies was the following: the 
closure of one of the two underpass tunnels that pass 
under the “Diego Armando Maradona” football stadi-
um was assumed. The closure of a main road link has 
produced a reallocation of flows on the road network, 
generating an increase in congestion (and related travel 
times) both on the private transport network and on the 
public transport (bus) network.

The intervention strategy proposed to mitigate the 
negative effects of the disruption consisted in identifying 

Figure 1. Private road network (left) and public transport network (right) in the case of Fuorigrotta district (Naples, Italy)
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the bus lines serving the origin-destination pairs which 
in the initial (non-intervention) scenario used mainly 
the underpass with the private road system and in pro-
posing an increase in service frequencies for these bus 
lines. The lines identified with this approach are line 2 
and line 5.

Hence, the analysed scenarios are:
 – Scenario 0: The non-intervention scenario where all 
road links are considered;

 – Scenario 1: The disruption scenario where one 
of the two underpass tunnels is closed but public 
transport frequencies are unchanged compared to 
scenario 0 (non-intervention scenario). This sce-
nario corresponds to the state of the system in the 
case that the underpass is closed and no mitigating 
action is undertaken;

 – Scenario 2: The scenario where the underpass is 
closed and the frequencies of line 2 and line 5 are 
doubled compared to scenario 0 (or scenario 1);

 – Scenario 3: The scenario where the underpass is 
closed and the frequencies of line 2 and line 5 are 
tripled compared to scenario 0 (or scenario 1).

This application requires the use of a suitable mul-
timodal assignment model as described in Section 2.1, 
whose schematization is summarised in Figure 2.

Tables 1–4 provide the numerical results of the ap-
plications. In particular, the main consequences of the 

underpass closure are: (a) an increase in travel times on 
the private road system because some vehicles have to 
change their paths, increasing congestion on the rest of 
the network; (b) an increase in travel times (onboard 
times) on the public transport system because buses 
travel in shared lanes.

Hence, Scenario 1 provides an increase in travel 
times for each user of the network.

The adoption of intervention strategies (i.e., Scena-
rio 2 and Scenario 3), based on the increase in service 
frequencies for some bus lines, provides the following 
effects: (1) a primary effect, consisting in reducing wait-
ing times (and therefore total travel time) of passengers 
of the public transport system; (2) a secondary effect, 
consisting in modifying the modal choice of users in 
favour of public transport, thus generating a reduction 
in vehicle flows with the consequent reduction in travel 
times on the private road system and onboard times of 
the public transport system.

Therefore, Scenarios 2 and 3 produce a reduction in 
travel times for each transport system, compared to the 
non-intervention scenario (i.e. Scenario 1). Indeed, the 
underpass closure provides an increase in congestion on 
both transportation systems (the total user generalised 
cost increases from 516,288 min-pax to 527,785 min-pax). 
The implementation of the mitigation strategies reduces 
these increases, providing an increase reduction of up to 

Figure 2. The framework of the bimodal assignment model
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44.61%. Moreover, in terms of intervention costs, against 
a cost of 104 euro/h for the strategy of doubling frequen-
cies (i.e. Scenario 2) and 208 euro/h for the strategies of 
tripling frequencies (i.e. Scenario 3), the reductions in 
terms of travel costs are respectively equal to 272 euro/h 
and 427 euro/h, providing an overall savings balance of 
168 euros/h in the first case and 219 euros/h in the sec-
ond case.

Conclusions and research prospects

The current paper has shown how the increase in the 
financing of public transport can be used to increase 
the resilience of transport networks. In particular, the 
numerical applications have shown that for every euro 
invested in the public transport system, the benefits are 
propagated both on the public transport and on the pri-
vate transport systems.

Indeed, the underpass closure has provided an in-
crease in congestion on both transportation systems 

(+10,285 min-pax in the private road system and 
+1,212 min-pax in the public transport system). The 
implementation of the mitigation strategies has pro-
vided a reduction in congestion increase in the case 
of the private road system (–2.69% in the case of Sce-
nario 2 and –3.23% in the case of Scenario 3). Al-
though these values may seem rather negligible, in the 
case of the public transport system, these reductions 
have quite other orders of magnitude, bringing the 
user generalized cost to values lower than the initial 
unperturbed condition (Scenario 0).

As research prospects, we propose to apply the pro-
posed methodology for evaluating the short-term effects 
(for example, in the case of disruption with a limited dura-
tion over time) on urban networks.

Furthermore, it would be possible to investigate, for 
example through a combinatorial analysis, the influences 
of other bus lines on the entire transport system or to ap-
ply an optimisation model for the definition of the optimal 
frequency values.

Table 1. User Generalised Cost (UGC) for each analysed scenario, expressed in terms of minutes per user

Scenario 0 Scenario 1 Scenario 2 Scenario 3

User generalised costs of the private road system
[min-pax] 260,243 270,528

(+3.95%)
270,251

(+3.85%)
270,196

(+3.82%)
User generalised costs of the public transport system
[min-pax] 256,045 257,257

(+0.47%)
254,270

(–0.69%)
252,460

(–1.40%)
Total user generalised costs
[min-pax] 516,288 527,785

(+2.23%)
524,521

(+1.59%)
522,656

(+1.23%)

Table 2. Average user generalised cost for each analysed scenario

Scenario 0 Scenario 1 Scenario 2 Scenario 3

Average user generalised cost on the private road system  
[min/pax] 11.86 12.33

(+3.98%)
12.32

(+3.89%)
12.32

(+3.88%)
Average user generalised cost on the public transport system 
[min/pax] 58.19 58.38

(+0.34%)
57.65

(–0.93%)
57.22

(–1.66%)
Average user generalised cost on the network
[min/pax] 23.52 24.05

(+2.26%)
23.91

(+1.64%)
23.82

(+1.29%)

Table 3. User costs for each analysed scenario

Scenario 0 Scenario 1 Scenario 2 Scenario 3

User costs on the private road system [Euro/h] 21,687 22,544
(+857)

22,521
(+834)

22,516
(+829)

User costs on the public transport system [Euro/h] 21,337 21,438
(+101)

21,189
(–148)

21,038
(–299)

Total user costs [Euro/h] 43,024 43,982
(+958)

43,710
(+686)

43,555
(+531)

Table 4. Intervention scenarios analysis

Scenario 1 Scenario 2 Scenario 3

Variation in total user costs [Euro/h] 0 –272 –427
Implementation costs [Euro/h] 0 104 208
Balance [Euro/h] 0 –168 –219
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